EdgeWeightNormΒΆ
-
class
dgl.nn.pytorch.conv.
EdgeWeightNorm
(norm='both', eps=0.0)[source]ΒΆ Bases:
torch.nn.modules.module.Module
This module normalizes positive scalar edge weights on a graph following the form in GCN.
Mathematically, setting
norm='both'
yields the following normalization term:\[c_{ji} = (\sqrt{\sum_{k\in\mathcal{N}(j)}e_{jk}}\sqrt{\sum_{k\in\mathcal{N}(i)}e_{ki}})\]And, setting
norm='right'
yields the following normalization term:\[c_{ji} = (\sum_{k\in\mathcal{N}(i)}e_{ki})\]where \(e_{ji}\) is the scalar weight on the edge from node \(j\) to node \(i\).
The module returns the normalized weight \(e_{ji} / c_{ji}\).
- Parameters
Examples
>>> import dgl >>> import numpy as np >>> import torch as th >>> from dgl.nn import EdgeWeightNorm, GraphConv
>>> g = dgl.graph(([0,1,2,3,2,5], [1,2,3,4,0,3])) >>> g = dgl.add_self_loop(g) >>> feat = th.ones(6, 10) >>> edge_weight = th.tensor([0.5, 0.6, 0.4, 0.7, 0.9, 0.1, 1, 1, 1, 1, 1, 1]) >>> norm = EdgeWeightNorm(norm='both') >>> norm_edge_weight = norm(g, edge_weight) >>> conv = GraphConv(10, 2, norm='none', weight=True, bias=True) >>> res = conv(g, feat, edge_weight=norm_edge_weight) >>> print(res) tensor([[-1.1849, -0.7525], [-1.3514, -0.8582], [-1.2384, -0.7865], [-1.9949, -1.2669], [-1.3658, -0.8674], [-0.8323, -0.5286]], grad_fn=<AddBackward0>)
-
forward
(graph, edge_weight)[source]ΒΆ Compute normalized edge weight for the GCN model.
- Parameters
graph (DGLGraph) β The graph.
edge_weight (torch.Tensor) β Unnormalized scalar weights on the edges. The shape is expected to be \((|E|)\).
- Returns
The normalized edge weight.
- Return type
torch.Tensor
- Raises
DGLError β Case 1: The edge weight is multi-dimensional. Currently this module only supports a scalar weight on each edge. Case 2: The edge weight has non-positive values with
norm='both'
. This will trigger square root and division by a non-positive number.