DeepWalkΒΆ
-
class
dgl.nn.pytorch.
DeepWalk
(g, emb_dim=128, walk_length=40, window_size=5, neg_weight=1, negative_size=5, fast_neg=True, sparse=True)[source]ΒΆ Bases:
torch.nn.modules.module.Module
DeepWalk module from DeepWalk: Online Learning of Social Representations
For a graph, it learns the node representations from scratch by maximizing the similarity of node pairs that are nearby (positive node pairs) and minimizing the similarity of other random node pairs (negative node pairs).
- Parameters
g (DGLGraph) β Graph for learning node embeddings
emb_dim (int, optional) β Size of each embedding vector. Default: 128
walk_length (int, optional) β Number of nodes in a random walk sequence. Default: 40
window_size (int, optional) β In a random walk
w
, a nodew[j]
is considered close to a nodew[i]
ifi - window_size <= j <= i + window_size
. Default: 5neg_weight (float, optional) β Weight of the loss term for negative samples in the total loss. Default: 1.0
negative_size (int, optional) β Number of negative samples to use for each positive sample. Default: 5
fast_neg (bool, optional) β If True, it samples negative node pairs within a batch of random walks. Default: True
sparse (bool, optional) β If True, gradients with respect to the learnable weights will be sparse. Default: True
-
node_embed
ΒΆ Embedding table of the nodes
- Type
nn.Embedding
Examples
>>> import torch >>> from dgl.data import CoraGraphDataset >>> from dgl.nn import DeepWalk >>> from torch.optim import SparseAdam >>> from torch.utils.data import DataLoader >>> from sklearn.linear_model import LogisticRegression
>>> dataset = CoraGraphDataset() >>> g = dataset[0] >>> model = DeepWalk(g) >>> dataloader = DataLoader(torch.arange(g.num_nodes()), batch_size=128, ... shuffle=True, collate_fn=model.sample) >>> optimizer = SparseAdam(model.parameters(), lr=0.01) >>> num_epochs = 5
>>> for epoch in range(num_epochs): ... for batch_walk in dataloader: ... loss = model(batch_walk) ... optimizer.zero_grad() ... loss.backward() ... optimizer.step()
>>> train_mask = g.ndata['train_mask'] >>> test_mask = g.ndata['test_mask'] >>> X = model.node_embed.weight.detach() >>> y = g.ndata['label'] >>> clf = LogisticRegression().fit(X[train_mask].numpy(), y[train_mask].numpy()) >>> clf.score(X[test_mask].numpy(), y[test_mask].numpy())