DenseChebConvΒΆ
-
class
dgl.nn.mxnet.conv.
DenseChebConv
(in_feats, out_feats, k, bias=True)[source]ΒΆ Bases:
mxnet.gluon.block.Block
Chebyshev Spectral Graph Convolution layer from Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering
We recommend to use this module when applying ChebConv on dense graphs.
- Parameters
in_feats (int) β Dimension of input features \(h_i^{(l)}\).
out_feats (int) β Dimension of output features \(h_i^{(l+1)}\).
k (int) β Chebyshev filter size.
activation (function, optional) β Activation function, default is ReLu.
bias (bool, optional) β If True, adds a learnable bias to the output. Default:
True
.
See also
-
forward
(adj, feat, lambda_max=None)[source]ΒΆ Compute (Dense) Chebyshev Spectral Graph Convolution layer.
- Parameters
adj (mxnet.NDArray) β The adjacency matrix of the graph to apply Graph Convolution on, should be of shape \((N, N)\), where a row represents the destination and a column represents the source.
feat (mxnet.NDArray) β The input feature of shape \((N, D_{in})\) where \(D_{in}\) is size of input feature, \(N\) is the number of nodes.
lambda_max (float or None, optional) β A float value indicates the largest eigenvalue of given graph. Default: None.
- Returns
The output feature of shape \((N, D_{out})\) where \(D_{out}\) is size of output feature.
- Return type
mxnet.NDArray