dgl.DGLGraph.remove_edgesΒΆ
-
DGLGraph.
remove_edges
(eids, etype=None, store_ids=False)[source]ΒΆ Remove multiple edges with the specified edge type
Nodes will not be removed. After removing edges, the rest edges will be re-indexed using consecutive integers from 0, with their relative order preserved.
The features for the removed edges will be removed accordingly.
- Parameters
eids (int, tensor, numpy.ndarray, list) β IDs for the edges to remove.
etype (str or tuple of str, optional) β The type of the edges to remove. Can be omitted if there is only one edge type in the graph.
store_ids (bool, optional) β If True, it will store the raw IDs of the extracted nodes and edges in the
ndata
andedata
of the resulting graph under namedgl.NID
anddgl.EID
, respectively.
Notes
This function preserves the batch information.
Examples
>>> import dgl >>> import torch
Homogeneous Graphs or Heterogeneous Graphs with A Single Edge Type
>>> g = dgl.graph((torch.tensor([0, 0, 2]), torch.tensor([0, 1, 2]))) >>> g.edata['he'] = torch.arange(3).float().reshape(-1, 1) >>> g.remove_edges(torch.tensor([0, 1])) >>> g Graph(num_nodes=3, num_edges=1, ndata_schemes={} edata_schemes={'he': Scheme(shape=(1,), dtype=torch.float32)}) >>> g.edges('all') (tensor([2]), tensor([2]), tensor([0])) >>> g.edata['he'] tensor([[2.]])
Removing edges from a batched graph preserves batch information.
>>> g = dgl.graph((torch.tensor([0, 0, 2]), torch.tensor([0, 1, 2]))) >>> g2 = dgl.graph((torch.tensor([1, 2, 3]), torch.tensor([1, 3, 4]))) >>> bg = dgl.batch([g, g2]) >>> bg.batch_num_edges() tensor([3, 3]) >>> bg.remove_edges([1, 4]) >>> bg.batch_num_edges() tensor([2, 2])
Heterogeneous Graphs with Multiple Edge Types
>>> g = dgl.heterograph({ ... ('user', 'plays', 'game'): (torch.tensor([0, 1, 1, 2]), ... torch.tensor([0, 0, 1, 1])), ... ('developer', 'develops', 'game'): (torch.tensor([0, 1]), ... torch.tensor([0, 1])) ... }) >>> g.remove_edges(torch.tensor([0, 1])) DGLError: Edge type name must be specified if there are more than one edge types. >>> g.remove_edges(torch.tensor([0, 1]), 'plays') >>> g.edges('all', etype='plays') (tensor([0, 1]), tensor([0, 0]), tensor([0, 1]))
See also