"""Basic feature store for GraphBolt."""
from typing import Dict, Tuple
import torch
from ..feature_store import Feature, FeatureStore
__all__ = ["BasicFeatureStore"]
[docs]class BasicFeatureStore(FeatureStore):
r"""A basic feature store to manage multiple features for access."""
def __init__(self, features: Dict[Tuple[str, str, str], Feature]):
r"""Initiate a basic feature store.
Parameters
----------
features : Dict[Tuple[str, str, str], Feature]
The dict of features served by the feature store, in which the key
is tuple of (domain, type_name, feature_name).
Returns
-------
The feature stores.
"""
super().__init__()
self._features = features
[docs] def read(
self,
domain: str,
type_name: str,
feature_name: str,
ids: torch.Tensor = None,
):
"""Read from the feature store.
Parameters
----------
domain : str
The domain of the feature such as "node", "edge" or "graph".
type_name : str
The node or edge type name.
feature_name : str
The feature name.
ids : torch.Tensor, optional
The index of the feature. If specified, only the specified indices
of the feature are read. If None, the entire feature is returned.
Returns
-------
torch.Tensor
The read feature.
"""
return self._features[(domain, type_name, feature_name)].read(ids)
[docs] def size(
self,
domain: str,
type_name: str,
feature_name: str,
):
"""Get the size of the specified feature in the feature store.
Parameters
----------
domain : str
The domain of the feature such as "node", "edge" or "graph".
type_name : str
The node or edge type name.
feature_name : str
The feature name.
Returns
-------
torch.Size
The size of the specified feature in the feature store.
"""
return self._features[(domain, type_name, feature_name)].size()
[docs] def update(
self,
domain: str,
type_name: str,
feature_name: str,
value: torch.Tensor,
ids: torch.Tensor = None,
):
"""Update the feature store.
Parameters
----------
domain : str
The domain of the feature such as "node", "edge" or "graph".
type_name : str
The node or edge type name.
feature_name : str
The feature name.
value : torch.Tensor
The updated value of the feature.
ids : torch.Tensor, optional
The indices of the feature to update. If specified, only the
specified indices of the feature will be updated. For the feature,
the `ids[i]` row is updated to `value[i]`. So the indices and value
must have the same length. If None, the entire feature will be
updated.
"""
self._features[(domain, type_name, feature_name)].update(value, ids)
def __len__(self):
"""Return the number of features."""
return len(self._features)