dgl.DGLGraph.inc¶
-
DGLGraph.
inc
(typestr, ctx=device(type='cpu'), etype=None)¶ Return the incidence matrix representation of edges with the given edge type.
An incidence matrix is an n-by-m sparse matrix, where n is the number of nodes and m is the number of edges. Each nnz value indicating whether the edge is incident to the node or not.
There are three types of incidence matrices \(I\):
in
:\(I[v, e] = 1\) if \(e\) is the in-edge of \(v\) (or \(v\) is the dst node of \(e\));
\(I[v, e] = 0\) otherwise.
out
:\(I[v, e] = 1\) if \(e\) is the out-edge of \(v\) (or \(v\) is the src node of \(e\));
\(I[v, e] = 0\) otherwise.
both
(only if source and destination node type are the same):\(I[v, e] = 1\) if \(e\) is the in-edge of \(v\);
\(I[v, e] = -1\) if \(e\) is the out-edge of \(v\);
\(I[v, e] = 0\) otherwise (including self-loop).
- Parameters
typestr (str) – Can be either
in
,out
orboth
ctx (context, optional) – The context of returned incidence matrix. (Default: cpu)
etype (str or (str, str, str), optional) –
The type names of the edges. The allowed type name formats are:
(str, str, str)
for source node type, edge type and destination node type.or one
str
edge type name if the name can uniquely identify a triplet format in the graph.
Can be omitted if the graph has only one type of edges.
- Returns
The incidence matrix.
- Return type
Framework SparseTensor
Examples
The following example uses PyTorch backend.
>>> import dgl
>>> g = dgl.graph(([0, 1], [0, 2])) >>> g.inc('in') tensor(indices=tensor([[0, 2], [0, 1]]), values=tensor([1., 1.]), size=(3, 2), nnz=2, layout=torch.sparse_coo) >>> g.inc('out') tensor(indices=tensor([[0, 1], [0, 1]]), values=tensor([1., 1.]), size=(3, 2), nnz=2, layout=torch.sparse_coo) >>> g.inc('both') tensor(indices=tensor([[1, 2], [1, 1]]), values=tensor([-1., 1.]), size=(3, 2), nnz=2, layout=torch.sparse_coo)