dgl.DGLGraph.apply_edges¶
-
DGLGraph.
apply_edges
(func, edges='__ALL__', etype=None, inplace=False)¶ Update the features of the specified edges by the provided function.
- Parameters
func (dgl.function.BuiltinFunction or callable) – The function to generate new edge features. It must be either a DGL Built-in Function or a User-defined Functions.
edges (edges) –
The edges to update features on. The allowed input formats are:
int
: A single edge ID.Int Tensor: Each element is an edge ID. The tensor must have the same device type and ID data type as the graph’s.
iterable[int]: Each element is an edge ID.
(Tensor, Tensor): The node-tensors format where the i-th elements of the two tensors specify an edge.
(iterable[int], iterable[int]): Similar to the node-tensors format but stores edge endpoints in python iterables.
Default value specifies all the edges in the graph.
etype (str or (str, str, str), optional) –
The type name of the edges. The allowed type name formats are:
(str, str, str)
for source node type, edge type and destination node type.or one
str
edge type name if the name can uniquely identify a triplet format in the graph.
Can be omitted if the graph has only one type of edges.
inplace (bool, optional) – DEPRECATED.
Notes
DGL recommends using DGL’s bulit-in function for the
func
argument, because DGL will invoke efficient kernels that avoids copying node features to edge features in this case.Examples
The following example uses PyTorch backend.
>>> import dgl >>> import torch
Homogeneous graph
>>> g = dgl.graph(([0, 1, 2, 3], [1, 2, 3, 4])) >>> g.ndata['h'] = torch.ones(5, 2) >>> g.apply_edges(lambda edges: {'x' : edges.src['h'] + edges.dst['h']}) >>> g.edata['x'] tensor([[2., 2.], [2., 2.], [2., 2.], [2., 2.]])
Use built-in function
>>> import dgl.function as fn >>> g.apply_edges(fn.u_add_v('h', 'h', 'x')) >>> g.edata['x'] tensor([[2., 2.], [2., 2.], [2., 2.], [2., 2.]])
Heterogeneous graph
>>> g = dgl.heterograph({('user', 'plays', 'game'): ([0, 1, 1, 2], [0, 0, 2, 1])}) >>> g.edges[('user', 'plays', 'game')].data['h'] = torch.ones(4, 5) >>> g.apply_edges(lambda edges: {'h': edges.data['h'] * 2}) >>> g.edges[('user', 'plays', 'game')].data['h'] tensor([[2., 2., 2., 2., 2.], [2., 2., 2., 2., 2.], [2., 2., 2., 2., 2.], [2., 2., 2., 2., 2.]])
See also