"""Torch modules for interaction blocks in SchNet"""
# pylint: disable= no-member, arguments-differ, invalid-name
import numpy as np
import torch.nn as nn
from .... import function as fn
class ShiftedSoftplus(nn.Module):
r"""
Description
-----------
Applies the element-wise function:
.. math::
\text{SSP}(x) = \frac{1}{\beta} * \log(1 + \exp(\beta * x)) - \log(\text{shift})
Attributes
----------
beta : int
:math:`\beta` value for the mathematical formulation. Default to 1.
shift : int
:math:`\text{shift}` value for the mathematical formulation. Default to 2.
"""
def __init__(self, beta=1, shift=2, threshold=20):
super(ShiftedSoftplus, self).__init__()
self.shift = shift
self.softplus = nn.Softplus(beta=beta, threshold=threshold)
def forward(self, inputs):
"""
Description
-----------
Applies the activation function.
Parameters
----------
inputs : float32 tensor of shape (N, *)
* denotes any number of additional dimensions.
Returns
-------
float32 tensor of shape (N, *)
Result of applying the activation function to the input.
"""
return self.softplus(inputs) - np.log(float(self.shift))
[docs]class CFConv(nn.Module):
r"""
Description
-----------
CFConv in SchNet.
SchNet is introduced in `SchNet: A continuous-filter convolutional neural network for
modeling quantum interactions <https://arxiv.org/abs/1706.08566>`__.
It combines node and edge features in message passing and updates node representations.
.. math::
h_i^{(l+1)} = \sum_{j\in \mathcal{N}(i)} h_j^{l} \circ W^{(l)}e_ij
where :math:`\circ` represents element-wise multiplication and for :math:`\text{SPP}` :
.. math::
\text{SSP}(x) = \frac{1}{\beta} * \log(1 + \exp(\beta * x)) - \log(\text{shift})
Parameters
----------
node_in_feats : int
Size for the input node features :math:`h_j^{(l)}`.
edge_in_feats : int
Size for the input edge features :math:`e_ij`.
hidden_feats : int
Size for the hidden representations.
out_feats : int
Size for the output representations :math:`h_j^{(l+1)}`.
Example
-------
>>> import dgl
>>> import numpy as np
>>> import torch as th
>>> from dgl.nn import CFConv
>>> g = dgl.graph(([0,1,2,3,2,5], [1,2,3,4,0,3]))
>>> nfeat = th.ones(6, 10)
>>> efeat = th.ones(6, 5)
>>> conv = CFConv(10, 5, 3, 2)
>>> res = conv(g, nfeat, efeat)
>>> res
tensor([[-0.1209, -0.2289],
[-0.1209, -0.2289],
[-0.1209, -0.2289],
[-0.1135, -0.2338],
[-0.1209, -0.2289],
[-0.1283, -0.2240]], grad_fn=<SubBackward0>)
"""
def __init__(self, node_in_feats, edge_in_feats, hidden_feats, out_feats):
super(CFConv, self).__init__()
self.project_edge = nn.Sequential(
nn.Linear(edge_in_feats, hidden_feats),
ShiftedSoftplus(),
nn.Linear(hidden_feats, hidden_feats),
ShiftedSoftplus()
)
self.project_node = nn.Linear(node_in_feats, hidden_feats)
self.project_out = nn.Sequential(
nn.Linear(hidden_feats, out_feats),
ShiftedSoftplus()
)
[docs] def forward(self, g, node_feats, edge_feats):
"""
Description
-----------
Performs message passing and updates node representations.
Parameters
----------
g : DGLGraph
The graph.
node_feats : torch.Tensor or pair of torch.Tensor
The input node features. If a torch.Tensor is given, it represents the input
node feature of shape :math:`(N, D_{in})` where :math:`D_{in}` is size of
input feature, :math:`N` is the number of nodes.
If a pair of torch.Tensor is given, which is the case for bipartite graph,
the pair must contain two tensors of shape :math:`(N_{src}, D_{in_{src}})` and
:math:`(N_{dst}, D_{in_{dst}})` separately for the source and destination nodes.
edge_feats : torch.Tensor
The input edge feature of shape :math:`(E, edge_in_feats)`
where :math:`E` is the number of edges.
Returns
-------
torch.Tensor
The output node feature of shape :math:`(N_{out}, out_feats)`
where :math:`N_{out}` is the number of destination nodes.
"""
with g.local_scope():
if isinstance(node_feats, tuple):
node_feats_src, _ = node_feats
else:
node_feats_src = node_feats
g.srcdata['hv'] = self.project_node(node_feats_src)
g.edata['he'] = self.project_edge(edge_feats)
g.update_all(fn.u_mul_e('hv', 'he', 'm'), fn.sum('m', 'h'))
return self.project_out(g.dstdata['h'])