Source code for dgl.nn.mxnet.conv.gatedgraphconv

"""MXNet Module for Gated Graph Convolution layer"""
# pylint: disable= no-member, arguments-differ, invalid-name, cell-var-from-loop
import mxnet as mx
from mxnet import gluon, nd
from mxnet.gluon import nn

from .... import function as fn

[docs]class GatedGraphConv(nn.Block): r""" Description ----------- Gated Graph Convolution layer from paper `Gated Graph Sequence Neural Networks <https://arxiv.org/pdf/1511.05493.pdf>`__. .. math:: h_{i}^{0} &= [ x_i \| \mathbf{0} ] a_{i}^{t} &= \sum_{j\in\mathcal{N}(i)} W_{e_{ij}} h_{j}^{t} h_{i}^{t+1} &= \mathrm{GRU}(a_{i}^{t}, h_{i}^{t}) Parameters ---------- in_feats : int Input feature size; i.e, the number of dimensions of :math:`x_i`. out_feats : int Output feature size; i.e., the number of dimensions of :math:`h_i^{(t+1)}`. n_steps : int Number of recurrent steps; i.e, the :math:`t` in the above formula. n_etypes : int Number of edge types. bias : bool If True, adds a learnable bias to the output. Default: ``True``. Can only be set to True in MXNet. Example ------- >>> import dgl >>> import numpy as np >>> import mxnet as mx >>> from dgl.nn import GatedGraphConv >>> >>> g = dgl.graph(([0,1,2,3,2,5], [1,2,3,4,0,3])) >>> feat = mx.nd.ones((6, 10)) >>> conv = GatedGraphConv(10, 10, 2, 3) >>> conv.initialize(ctx=mx.cpu(0)) >>> etype = mx.nd.array([0,1,2,0,1,2]) >>> res = conv(g, feat, etype) >>> res [[0.24378185 0.17402579 0.2644723 0.2740628 0.14041871 0.32523093 0.2703067 0.18234392 0.32777587 0.30957845] [0.17872348 0.28878236 0.2509409 0.20139427 0.3355541 0.22643831 0.2690711 0.22341749 0.27995753 0.21575949] [0.23911178 0.16696918 0.26120248 0.27397877 0.13745922 0.3223175 0.27561218 0.18071817 0.3251124 0.30608907] [0.25242943 0.3098581 0.25249368 0.27968448 0.24624602 0.12270881 0.335147 0.31550157 0.19065917 0.21087633] [0.17503153 0.29523152 0.2474858 0.20848347 0.3526433 0.23443702 0.24741334 0.21986549 0.28935105 0.21859099] [0.2159364 0.26942077 0.23083271 0.28329757 0.24758333 0.24230732 0.23958017 0.23430146 0.26431587 0.27001363]] <NDArray 6x10 @cpu(0)> """ def __init__(self, in_feats, out_feats, n_steps, n_etypes, bias=True): super(GatedGraphConv, self).__init__() self._in_feats = in_feats self._out_feats = out_feats self._n_steps = n_steps self._n_etypes = n_etypes if not bias: raise KeyError('MXNet do not support disabling bias in GRUCell.') with self.name_scope(): self.linears = nn.Sequential() for _ in range(n_etypes): self.linears.add( nn.Dense(out_feats, weight_initializer=mx.init.Xavier(), in_units=out_feats) ) self.gru = gluon.rnn.GRUCell(out_feats, input_size=out_feats)
[docs] def forward(self, graph, feat, etypes): """Compute Gated Graph Convolution layer. Parameters ---------- graph : DGLGraph The graph. feat : mxnet.NDArray The input feature of shape :math:`(N, D_{in})` where :math:`N` is the number of nodes of the graph and :math:`D_{in}` is the input feature size. etypes : torch.LongTensor The edge type tensor of shape :math:`(E,)` where :math:`E` is the number of edges of the graph. Returns ------- mxnet.NDArray The output feature of shape :math:`(N, D_{out})` where :math:`D_{out}` is the output feature size. """ with graph.local_scope(): assert graph.is_homogeneous, \ "not a homogeneous graph; convert it with to_homogeneous " \ "and pass in the edge type as argument" zero_pad = nd.zeros((feat.shape[0], self._out_feats - feat.shape[1]), ctx=feat.context) feat = nd.concat(feat, zero_pad, dim=-1) for _ in range(self._n_steps): graph.ndata['h'] = feat for i in range(self._n_etypes): eids = (etypes.asnumpy() == i).nonzero()[0] eids = nd.from_numpy(eids, zero_copy=True).as_in_context( feat.context).astype(graph.idtype) if len(eids) > 0: graph.apply_edges( lambda edges: {'W_e*h': self.linears[i](edges.src['h'])}, eids ) graph.update_all(fn.copy_e('W_e*h', 'm'), fn.sum('m', 'a')) a = graph.ndata.pop('a') feat = self.gru(a, [feat])[0] return feat