Source code for dgl.nn.mxnet.conv.chebconv

"""MXNet Module for Chebyshev Spectral Graph Convolution layer"""
# pylint: disable= no-member, arguments-differ, invalid-name
import math
import mxnet as mx
from mxnet import nd
from mxnet.gluon import nn

from ....base import dgl_warning
from .... import broadcast_nodes, function as fn


[docs]class ChebConv(nn.Block): r""" Description ----------- Chebyshev Spectral Graph Convolution layer from paper `Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering <https://arxiv.org/pdf/1606.09375.pdf>`__. .. math:: h_i^{l+1} &= \sum_{k=0}^{K-1} W^{k, l}z_i^{k, l} Z^{0, l} &= H^{l} Z^{1, l} &= \tilde{L} \cdot H^{l} Z^{k, l} &= 2 \cdot \tilde{L} \cdot Z^{k-1, l} - Z^{k-2, l} \tilde{L} &= 2\left(I - \tilde{D}^{-1/2} \tilde{A} \tilde{D}^{-1/2}\right)/\lambda_{max} - I where :math:`\tilde{A}` is :math:`A` + :math:`I`, :math:`W` is learnable weight. Parameters ---------- in_feats: int Dimension of input features; i.e, the number of dimensions of :math:`h_i^{(l)}`. out_feats: int Dimension of output features :math:`h_i^{(l+1)}`. k : int Chebyshev filter size :math:`K`. activation : function, optional Activation function. Default ``ReLu``. bias : bool, optional If True, adds a learnable bias to the output. Default: ``True``. Example ------- >>> import dgl >>> import numpy as np >>> import mxnet as mx >>> from dgl.nn import ChebConv >>> g = dgl.graph(([0,1,2,3,2,5], [1,2,3,4,0,3])) >>> feat = mx.nd.ones((6, 10)) >>> conv = ChebConv(10, 2, 2) >>> conv.initialize(ctx=mx.cpu(0)) >>> res = conv(g, feat) >>> res [[ 0.832592 -0.738757 ] [ 0.832592 -0.738757 ] [ 0.832592 -0.738757 ] [ 0.43377423 -1.0455742 ] [ 1.1145986 -0.5218046 ] [ 1.7954229 0.00196505]] <NDArray 6x2 @cpu(0)> """ def __init__(self, in_feats, out_feats, k, bias=True): super(ChebConv, self).__init__() self._in_feats = in_feats self._out_feats = out_feats self._k = k with self.name_scope(): self.fc = nn.Sequential() for _ in range(k): self.fc.add( nn.Dense(out_feats, use_bias=False, weight_initializer=mx.init.Xavier(magnitude=math.sqrt(2.0)), in_units=in_feats) ) if bias: self.bias = self.params.get('bias', shape=(out_feats,), init=mx.init.Zero()) else: self.bias = None
[docs] def forward(self, graph, feat, lambda_max=None): r""" Description ----------- Compute ChebNet layer. Parameters ---------- graph : DGLGraph The graph. feat : mxnet.NDArray The input feature of shape :math:`(N, D_{in})` where :math:`D_{in}` is size of input feature, :math:`N` is the number of nodes. lambda_max : list or tensor or None, optional. A list(tensor) with length :math:`B`, stores the largest eigenvalue of the normalized laplacian of each individual graph in ``graph``, where :math:`B` is the batch size of the input graph. Default: None. If None, this method would set the default value to 2. One can use :func:`dgl.laplacian_lambda_max` to compute this value. Returns ------- mxnet.NDArray The output feature of shape :math:`(N, D_{out})` where :math:`D_{out}` is size of output feature. """ with graph.local_scope(): degs = graph.in_degrees().astype('float32') norm = mx.nd.power(mx.nd.clip(degs, a_min=1, a_max=float("inf")), -0.5) norm = norm.expand_dims(-1).as_in_context(feat.context) if lambda_max is None: dgl_warning( "lambda_max is not provided, using default value of 2. " "Please use dgl.laplacian_lambda_max to compute the eigenvalues.") lambda_max = [2] * graph.batch_size if isinstance(lambda_max, list): lambda_max = nd.array(lambda_max).as_in_context(feat.context) if lambda_max.ndim == 1: lambda_max = lambda_max.expand_dims(-1) # broadcast from (B, 1) to (N, 1) lambda_max = broadcast_nodes(graph, lambda_max) # T0(X) Tx_0 = feat rst = self.fc[0](Tx_0) # T1(X) if self._k > 1: graph.ndata['h'] = Tx_0 * norm graph.update_all(fn.copy_u('h', 'm'), fn.sum('m', 'h')) h = graph.ndata.pop('h') * norm # Λ = 2 * (I - D ^ -1/2 A D ^ -1/2) / lambda_max - I # = - 2(D ^ -1/2 A D ^ -1/2) / lambda_max + (2 / lambda_max - 1) I Tx_1 = -2. * h / lambda_max + Tx_0 * (2. / lambda_max - 1) rst = rst + self.fc[1](Tx_1) # Ti(x), i = 2...k for i in range(2, self._k): graph.ndata['h'] = Tx_1 * norm graph.update_all(fn.copy_u('h', 'm'), fn.sum('m', 'h')) h = graph.ndata.pop('h') * norm # Tx_k = 2 * Λ * Tx_(k-1) - Tx_(k-2) # = - 4(D ^ -1/2 A D ^ -1/2) / lambda_max Tx_(k-1) + # (4 / lambda_max - 2) Tx_(k-1) - # Tx_(k-2) Tx_2 = -4. * h / lambda_max + Tx_1 * (4. / lambda_max - 2) - Tx_0 rst = rst + self.fc[i](Tx_2) Tx_1, Tx_0 = Tx_2, Tx_1 # add bias if self.bias is not None: rst = rst + self.bias.data(feat.context) return rst