Source code for dgl.dataloading.negative_sampler
"""Negative samplers"""
from collections.abc import Mapping
from .. import backend as F
class _BaseNegativeSampler(object):
def _generate(self, g, eids, canonical_etype):
raise NotImplementedError
def __call__(self, g, eids):
"""Returns negative examples.
Parameters
----------
g : DGLGraph
The graph.
eids : Tensor or dict[etype, Tensor]
The sampled edges in the minibatch.
Returns
-------
tuple[Tensor, Tensor] or dict[etype, tuple[Tensor, Tensor]]
The returned source-destination pairs as negative examples.
"""
if isinstance(eids, Mapping):
eids = {g.to_canonical_etype(k): v for k, v in eids.items()}
neg_pair = {k: self._generate(g, v, k) for k, v in eids.items()}
else:
assert len(g.etypes) == 1, \
'please specify a dict of etypes and ids for graphs with multiple edge types'
neg_pair = self._generate(g, eids, g.canonical_etypes[0])
return neg_pair
[docs]class Uniform(_BaseNegativeSampler):
"""Negative sampler that randomly chooses negative destination nodes
for each source node according to a uniform distribution.
For each edge ``(u, v)`` of type ``(srctype, etype, dsttype)``, DGL generates
:attr:`k` pairs of negative edges ``(u, v')``, where ``v'`` is chosen
uniformly from all the nodes of type ``dsttype``. The resulting edges will
also have type ``(srctype, etype, dsttype)``.
Parameters
----------
k : int
The number of negative examples per edge.
Examples
--------
>>> g = dgl.graph(([0, 1, 2], [1, 2, 3]))
>>> neg_sampler = dgl.dataloading.negative_sampler.Uniform(2)
>>> neg_sampler(g, [0, 1])
(tensor([0, 0, 1, 1]), tensor([1, 0, 2, 3]))
"""
def __init__(self, k):
self.k = k
def _generate(self, g, eids, canonical_etype):
_, _, vtype = canonical_etype
shape = F.shape(eids)
dtype = F.dtype(eids)
ctx = F.context(eids)
shape = (shape[0] * self.k,)
src, _ = g.find_edges(eids, etype=canonical_etype)
src = F.repeat(src, self.k, 0)
dst = F.randint(shape, dtype, ctx, 0, g.number_of_nodes(vtype))
return src, dst