dgl.node_homophilyο
- dgl.node_homophily(graph, y)[source]ο
Homophily measure from Geom-GCN: Geometric Graph Convolutional Networks
We follow the practice of a later paper Large Scale Learning on Non-Homophilous Graphs: New Benchmarks and Strong Simple Methods to call it node homophily.
Mathematically it is defined as follows:
\[\frac{1}{|\mathcal{V}|} \sum_{v \in \mathcal{V}} \frac{ | \{u \in \mathcal{N}(v): y_v = y_u \} | } { |\mathcal{N}(v)| },\]where \(\mathcal{V}\) is the set of nodes, \(\mathcal{N}(v)\) is the predecessors of node \(v\), and \(y_v\) is the class of node \(v\).
- Parameters:
- Returns:
The node homophily value.
- Return type:
Examples
>>> import dgl >>> import torch
>>> graph = dgl.graph(([1, 2, 0, 4], [0, 1, 2, 3])) >>> y = torch.tensor([0, 0, 0, 0, 1]) >>> dgl.node_homophily(graph, y) 0.6000000238418579