4.4 Save and load data

(δΈ­ζ–‡η‰ˆ)

DGL recommends implementing saving and loading functions to cache the processed data in local disk. This saves a lot of data processing time in most cases. DGL provides four functions to make things simple:

The following example shows how to save and load a list of graphs and dataset information.

import os
from dgl import save_graphs, load_graphs
from dgl.data.utils import makedirs, save_info, load_info

def save(self):
    # save graphs and labels
    graph_path = os.path.join(self.save_path, self.mode + '_dgl_graph.bin')
    save_graphs(graph_path, self.graphs, {'labels': self.labels})
    # save other information in python dict
    info_path = os.path.join(self.save_path, self.mode + '_info.pkl')
    save_info(info_path, {'num_classes': self.num_classes})

def load(self):
    # load processed data from directory `self.save_path`
    graph_path = os.path.join(self.save_path, self.mode + '_dgl_graph.bin')
    self.graphs, label_dict = load_graphs(graph_path)
    self.labels = label_dict['labels']
    info_path = os.path.join(self.save_path, self.mode + '_info.pkl')
    self.num_classes = load_info(info_path)['num_classes']

def has_cache(self):
    # check whether there are processed data in `self.save_path`
    graph_path = os.path.join(self.save_path, self.mode + '_dgl_graph.bin')
    info_path = os.path.join(self.save_path, self.mode + '_info.pkl')
    return os.path.exists(graph_path) and os.path.exists(info_path)

Note that there are cases not suitable to save processed data. For example, in the builtin dataset GDELTDataset, the processed data is quite large, so it’s more effective to process each data example in __getitem__(idx).