dgl.sparse.SparseMatrix.reduce¶
-
SparseMatrix.
reduce
(dim: Optional[int] = None, rtype: str = 'sum')¶ Computes the reduction of non-zero values of the
input
sparse matrix along the given dimensiondim
.The reduction does not count zero elements. If the row or column to be reduced does not have any non-zero elements, the result will be 0.
- Parameters
input (SparseMatrix) – The input sparse matrix
dim (int, optional) –
The dimension to reduce, must be either 0 (by rows) or 1 (by columns) or None (on both rows and columns simultaneously)
If
dim
is None, it reduces both the rows and the columns in the sparse matrix, producing a tensor of shapeinput.val.shape[1:]
. Otherwise, it reduces on the row (dim=0
) or column (dim=1
) dimension, producing a tensor of shape(input.shape[1],) + input.val.shape[1:]
or(input.shape[0],) + input.val.shape[1:]
.rtype (str, optional) – Reduction type, one of
['sum', 'smin', 'smax', 'smean', 'sprod']
, representing taking the sum, minimum, maximum, mean, and product of the non-zero elements
- Returns
Reduced tensor
- Return type
torch.Tensor
Examples
Case1: scalar-valued sparse matrix
>>> indices = torch.tensor([[0, 1, 1], [0, 0, 2]]) >>> val = torch.tensor([1, 1, 2]) >>> A = dglsp.spmatrix(indices, val, shape=(4, 3)) >>> dglsp.reduce(A, rtype='sum') tensor(4) >>> dglsp.reduce(A, 0, 'sum') tensor([2, 0, 2]) >>> dglsp.reduce(A, 1, 'sum') tensor([1, 3, 0, 0]) >>> dglsp.reduce(A, 0, 'smax') tensor([1, 0, 2]) >>> dglsp.reduce(A, 1, 'smin') tensor([1, 1, 0, 0])
Case2: vector-valued sparse matrix
>>> indices = torch.tensor([[0, 1, 1], [0, 0, 2]]) >>> val = torch.tensor([[1., 2.], [2., 1.], [2., 2.]]) >>> A = dglsp.spmatrix(indices, val, shape=(4, 3)) >>> dglsp.reduce(A, rtype='sum') tensor([5., 5.]) >>> dglsp.reduce(A, 0, 'sum') tensor([[3., 3.], [0., 0.], [2., 2.]]) >>> dglsp.reduce(A, 1, 'smin') tensor([[1., 2.], [2., 1.], [0., 0.], [0., 0.]]) >>> dglsp.reduce(A, 0, 'smean') tensor([[1.5000, 1.5000], [0.0000, 0.0000], [2.0000, 2.0000]])