TAGConv¶
-
class
dgl.nn.mxnet.conv.
TAGConv
(in_feats, out_feats, k=2, bias=True, activation=None)[source]¶ Bases:
mxnet.gluon.block.Block
Topology Adaptive Graph Convolutional layer from Topology Adaptive Graph Convolutional Networks.
\[H^{K} = {\sum}_{k=0}^K (D^{-1/2} A D^{-1/2})^{k} X {\Theta}_{k},\]where \(A\) denotes the adjacency matrix, \(D_{ii} = \sum_{j=0} A_{ij}\) its diagonal degree matrix, \({\Theta}_{k}\) denotes the linear weights to sum the results of different hops together.
- Parameters
in_feats (int) – Input feature size. i.e, the number of dimensions of \(X\).
out_feats (int) – Output feature size. i.e, the number of dimensions of \(H^{K}\).
k (int, optional) – Number of hops \(K\). Default:
2
.bias (bool, optional) – If True, adds a learnable bias to the output. Default:
True
.activation (callable activation function/layer or None, optional) – If not None, applies an activation function to the updated node features. Default:
None
.
-
lin
¶ The learnable linear module.
- Type
torch.Module
Example
>>> import dgl >>> import numpy as np >>> import mxnet as mx >>> from mxnet import gluon >>> from dgl.nn import TAGConv >>> >>> g = dgl.graph(([0,1,2,3,2,5], [1,2,3,4,0,3])) >>> feat = mx.nd.ones((6, 10)) >>> conv = TAGConv(10, 2, k=2) >>> conv.initialize(ctx=mx.cpu(0)) >>> res = conv(g, feat) >>> res [[-0.86147034 0.10089529] [-0.86147034 0.10089529] [-0.86147034 0.10089529] [-0.9707841 0.0360311 ] [-0.6716844 0.02247889] [ 0.32964635 -0.7669234 ]] <NDArray 6x2 @cpu(0)>
-
forward
(graph, feat)[source]¶ Compute topology adaptive graph convolution.
- Parameters
graph (DGLGraph) – The graph.
feat (mxnet.NDArray) – The input feature of shape \((N, D_{in})\) where \(D_{in}\) is size of input feature, \(N\) is the number of nodes.
- Returns
The output feature of shape \((N, D_{out})\) where \(D_{out}\) is size of output feature.
- Return type
mxnet.NDArray