import os
import numpy as np
import scipy.sparse as sp
from .. import backend as F
from ..convert import graph
from .dgl_dataset import DGLBuiltinDataset
from .utils import _get_dgl_url, load_graphs, load_info, save_graphs, save_info
[docs]class FakeNewsDataset(DGLBuiltinDataset):
r"""Fake News Graph Classification dataset.
The dataset is composed of two sets of tree-structured fake/real
news propagation graphs extracted from Twitter. Different from
most of the benchmark datasets for the graph classification task,
the graphs in this dataset are directed tree-structured graphs where
the root node represents the news, the leaf nodes are Twitter users
who retweeted the root news. Besides, the node features are encoded
user historical tweets using different pretrained language models:
- bert: the 768-dimensional node feature composed of Twitter user historical tweets encoded by the bert-as-service
- content: the 310-dimensional node feature composed of a 300-dimensional “spacy” vector plus a 10-dimensional “profile” vector
- profile: the 10-dimensional node feature composed of ten Twitter user profile attributes.
- spacy: the 300-dimensional node feature composed of Twitter user historical tweets encoded by the spaCy word2vec encoder.
Reference: <https://github.com/safe-graph/GNN-FakeNews>
Note: this dataset is for academic use only, and commercial use is prohibited.
Statistics:
Politifact:
- Graphs: 314
- Nodes: 41,054
- Edges: 40,740
- Classes:
- Fake: 157
- Real: 157
- Node feature size:
- bert: 768
- content: 310
- profile: 10
- spacy: 300
Gossipcop:
- Graphs: 5,464
- Nodes: 314,262
- Edges: 308,798
- Classes:
- Fake: 2,732
- Real: 2,732
- Node feature size:
- bert: 768
- content: 310
- profile: 10
- spacy: 300
Parameters
----------
name : str
Name of the dataset (gossipcop, or politifact)
feature_name : str
Name of the feature (bert, content, profile, or spacy)
raw_dir : str
Specifying the directory that will store the
downloaded data or the directory that
already stores the input data.
Default: ~/.dgl/
transform : callable, optional
A transform that takes in a :class:`~dgl.DGLGraph` object and returns
a transformed version. The :class:`~dgl.DGLGraph` object will be
transformed before every access.
Attributes
----------
name : str
Name of the dataset (gossipcop, or politifact)
num_classes : int
Number of label classes
num_graphs : int
Number of graphs
graphs : list
A list of DGLGraph objects
labels : Tensor
Graph labels
feature_name : str
Name of the feature (bert, content, profile, or spacy)
feature : Tensor
Node features
train_mask : Tensor
Mask of training set
val_mask : Tensor
Mask of validation set
test_mask : Tensor
Mask of testing set
Examples
--------
>>> dataset = FakeNewsDataset('gossipcop', 'bert')
>>> graph, label = dataset[0]
>>> num_classes = dataset.num_classes
>>> feat = dataset.feature
>>> labels = dataset.labels
"""
file_urls = {
"gossipcop": "dataset/FakeNewsGOS.zip",
"politifact": "dataset/FakeNewsPOL.zip",
}
def __init__(self, name, feature_name, raw_dir=None, transform=None):
assert name in [
"gossipcop",
"politifact",
], "Only supports 'gossipcop' or 'politifact'."
url = _get_dgl_url(self.file_urls[name])
assert feature_name in [
"bert",
"content",
"profile",
"spacy",
], "Only supports 'bert', 'content', 'profile', or 'spacy'"
self.feature_name = feature_name
super(FakeNewsDataset, self).__init__(
name=name, url=url, raw_dir=raw_dir, transform=transform
)
def process(self):
"""process raw data to graph, labels and masks"""
self.labels = F.tensor(
np.load(os.path.join(self.raw_path, "graph_labels.npy"))
)
num_graphs = self.labels.shape[0]
node_graph_id = np.load(
os.path.join(self.raw_path, "node_graph_id.npy")
)
edges = np.genfromtxt(
os.path.join(self.raw_path, "A.txt"), delimiter=",", dtype=int
)
src = edges[:, 0]
dst = edges[:, 1]
g = graph((src, dst))
node_idx_list = []
for idx in range(np.max(node_graph_id) + 1):
node_idx = np.where(node_graph_id == idx)
node_idx_list.append(node_idx[0])
self.graphs = [g.subgraph(node_idx) for node_idx in node_idx_list]
train_idx = np.load(os.path.join(self.raw_path, "train_idx.npy"))
val_idx = np.load(os.path.join(self.raw_path, "val_idx.npy"))
test_idx = np.load(os.path.join(self.raw_path, "test_idx.npy"))
train_mask = np.zeros(num_graphs, dtype=np.bool_)
val_mask = np.zeros(num_graphs, dtype=np.bool_)
test_mask = np.zeros(num_graphs, dtype=np.bool_)
train_mask[train_idx] = True
val_mask[val_idx] = True
test_mask[test_idx] = True
self.train_mask = F.tensor(train_mask)
self.val_mask = F.tensor(val_mask)
self.test_mask = F.tensor(test_mask)
feature_file = "new_" + self.feature_name + "_feature.npz"
self.feature = F.tensor(
sp.load_npz(os.path.join(self.raw_path, feature_file)).todense()
)
def save(self):
"""save the graph list and the labels"""
save_graphs(str(self.graph_path), self.graphs)
save_info(
self.info_path,
{
"label": self.labels,
"feature": self.feature,
"train_mask": self.train_mask,
"val_mask": self.val_mask,
"test_mask": self.test_mask,
},
)
@property
def graph_path(self):
return os.path.join(self.save_path, self.name + "_dgl_graph.bin")
@property
def info_path(self):
return os.path.join(self.save_path, self.name + "_dgl_graph.pkl")
def has_cache(self):
"""check whether there are processed data in `self.save_path`"""
return os.path.exists(self.graph_path) and os.path.exists(
self.info_path
)
def load(self):
"""load processed data from directory `self.save_path`"""
graphs, _ = load_graphs(str(self.graph_path))
info = load_info(str(self.info_path))
self.graphs = graphs
self.labels = info["label"]
self.feature = info["feature"]
self.train_mask = info["train_mask"]
self.val_mask = info["val_mask"]
self.test_mask = info["test_mask"]
@property
def num_classes(self):
"""Number of classes for each graph, i.e. number of prediction tasks."""
return 2
@property
def num_graphs(self):
"""Number of graphs."""
return self.labels.shape[0]
[docs] def __getitem__(self, i):
r"""Get graph and label by index
Parameters
----------
i : int
Item index
Returns
-------
(:class:`dgl.DGLGraph`, Tensor)
"""
if self._transform is None:
g = self.graphs[i]
else:
g = self._transform(self.graphs[i])
return g, self.labels[i]
[docs] def __len__(self):
r"""Number of graphs in the dataset.
Return
-------
int
"""
return len(self.graphs)