Source code for dgl.nn.pytorch.conv.dotgatconv

"""Torch modules for graph attention networks(GAT)."""
# pylint: disable= no-member, arguments-differ, invalid-name
from torch import nn

from .... import function as fn
from ...functional import edge_softmax
from ....base import DGLError
from ....utils import expand_as_pair


[docs]class DotGatConv(nn.Module): r"""Apply dot product version of self attention in `Graph Attention Network <https://arxiv.org/pdf/1710.10903.pdf>`__ .. math:: h_i^{(l+1)} = \sum_{j\in \mathcal{N}(i)} \alpha_{i, j} h_j^{(l)} where :math:`\alpha_{ij}` is the attention score bewteen node :math:`i` and node :math:`j`: .. math:: \alpha_{i, j} &= \mathrm{softmax_i}(e_{ij}^{l}) e_{ij}^{l} &= ({W_i^{(l)} h_i^{(l)}})^T \cdot {W_j^{(l)} h_j^{(l)}} where :math:`W_i` and :math:`W_j` transform node :math:`i`'s and node :math:`j`'s features into the same dimension, so that when compute note features' similarity, it can use dot-product. Parameters ---------- in_feats : int, or pair of ints Input feature size; i.e, the number of dimensions of :math:`h_i^{(l)}`. DotGatConv can be applied on homogeneous graph and unidirectional `bipartite graph <https://docs.dgl.ai/generated/dgl.bipartite.html?highlight=bipartite>`__. If the layer is to be applied to a unidirectional bipartite graph, ``in_feats`` specifies the input feature size on both the source and destination nodes. If a scalar is given, the source and destination node feature size would take the same value. out_feats : int Output feature size; i.e, the number of dimensions of :math:`h_i^{(l+1)}`. num_heads : int Number of head in Multi-Head Attention allow_zero_in_degree : bool, optional If there are 0-in-degree nodes in the graph, output for those nodes will be invalid since no message will be passed to those nodes. This is harmful for some applications causing silent performance regression. This module will raise a DGLError if it detects 0-in-degree nodes in input graph. By setting ``True``, it will suppress the check and let the users handle it by themselves. Default: ``False``. Note ---- Zero in-degree nodes will lead to invalid output value. This is because no message will be passed to those nodes, the aggregation function will be appied on empty input. A common practice to avoid this is to add a self-loop for each node in the graph if it is homogeneous, which can be achieved by: >>> g = ... # a DGLGraph >>> g = dgl.add_self_loop(g) Calling ``add_self_loop`` will not work for some graphs, for example, heterogeneous graph since the edge type can not be decided for self_loop edges. Set ``allow_zero_in_degree`` to ``True`` for those cases to unblock the code and handle zero-in-degree nodes manually. A common practise to handle this is to filter out the nodes with zero-in-degree when use after conv. Examples -------- >>> import dgl >>> import numpy as np >>> import torch as th >>> from dgl.nn import DotGatConv >>> # Case 1: Homogeneous graph >>> g = dgl.graph(([0,1,2,3,2,5], [1,2,3,4,0,3])) >>> g = dgl.add_self_loop(g) >>> feat = th.ones(6, 10) >>> dotgatconv = DotGatConv(10, 2, num_heads=3) >>> res = dotgatconv(g, feat) >>> res tensor([[[ 3.4570, 1.8634], [ 1.3805, -0.0762], [ 1.0390, -1.1479]], [[ 3.4570, 1.8634], [ 1.3805, -0.0762], [ 1.0390, -1.1479]], [[ 3.4570, 1.8634], [ 1.3805, -0.0762], [ 1.0390, -1.1479]], [[ 3.4570, 1.8634], [ 1.3805, -0.0762], [ 1.0390, -1.1479]], [[ 3.4570, 1.8634], [ 1.3805, -0.0762], [ 1.0390, -1.1479]], [[ 3.4570, 1.8634], [ 1.3805, -0.0762], [ 1.0390, -1.1479]]], grad_fn=<BinaryReduceBackward>) >>> # Case 2: Unidirectional bipartite graph >>> u = [0, 1, 0, 0, 1] >>> v = [0, 1, 2, 3, 2] >>> g = dgl.heterograph({('_N', '_E', '_N'):(u, v)}) >>> u_feat = th.tensor(np.random.rand(2, 5).astype(np.float32)) >>> v_feat = th.tensor(np.random.rand(4, 10).astype(np.float32)) >>> dotgatconv = DotGatConv((5,10), 2, 3) >>> res = dotgatconv(g, (u_feat, v_feat)) >>> res tensor([[[-0.6066, 1.0268], [-0.5945, -0.4801], [ 0.1594, 0.3825]], [[ 0.0268, 1.0783], [ 0.5041, -1.3025], [ 0.6568, 0.7048]], [[-0.2688, 1.0543], [-0.0315, -0.9016], [ 0.3943, 0.5347]], [[-0.6066, 1.0268], [-0.5945, -0.4801], [ 0.1594, 0.3825]]], grad_fn=<BinaryReduceBackward>) """ def __init__(self, in_feats, out_feats, num_heads, allow_zero_in_degree=False): super(DotGatConv, self).__init__() self._in_src_feats, self._in_dst_feats = expand_as_pair(in_feats) self._out_feats = out_feats self._allow_zero_in_degree = allow_zero_in_degree self._num_heads = num_heads if isinstance(in_feats, tuple): self.fc_src = nn.Linear(self._in_src_feats, self._out_feats*self._num_heads, bias=False) self.fc_dst = nn.Linear(self._in_dst_feats, self._out_feats*self._num_heads, bias=False) else: self.fc = nn.Linear(self._in_src_feats, self._out_feats*self._num_heads, bias=False)
[docs] def forward(self, graph, feat, get_attention=False): r""" Description ----------- Apply dot product version of self attention in GCN. Parameters ---------- graph: DGLGraph or bi_partities graph The graph feat: torch.Tensor or pair of torch.Tensor If a torch.Tensor is given, the input feature of shape :math:`(N, D_{in})` where :math:`D_{in}` is size of input feature, :math:`N` is the number of nodes. If a pair of torch.Tensor is given, the pair must contain two tensors of shape :math:`(N_{in}, D_{in_{src}})` and :math:`(N_{out}, D_{in_{dst}})`. get_attention : bool, optional Whether to return the attention values. Default to False. Returns ------- torch.Tensor The output feature of shape :math:`(N, D_{out})` where :math:`D_{out}` is size of output feature. torch.Tensor, optional The attention values of shape :math:`(E, 1)`, where :math:`E` is the number of edges. This is returned only when :attr:`get_attention` is ``True``. Raises ------ DGLError If there are 0-in-degree nodes in the input graph, it will raise DGLError since no message will be passed to those nodes. This will cause invalid output. The error can be ignored by setting ``allow_zero_in_degree`` parameter to ``True``. """ graph = graph.local_var() if not self._allow_zero_in_degree: if (graph.in_degrees() == 0).any(): raise DGLError('There are 0-in-degree nodes in the graph, ' 'output for those nodes will be invalid. ' 'This is harmful for some applications, ' 'causing silent performance regression. ' 'Adding self-loop on the input graph by ' 'calling `g = dgl.add_self_loop(g)` will resolve ' 'the issue. Setting ``allow_zero_in_degree`` ' 'to be `True` when constructing this module will ' 'suppress the check and let the code run.') # check if feat is a tuple if isinstance(feat, tuple): h_src = feat[0] h_dst = feat[1] feat_src = self.fc_src(h_src).view(-1, self._num_heads, self._out_feats) feat_dst = self.fc_dst(h_dst).view(-1, self._num_heads, self._out_feats) else: h_src = feat feat_src = feat_dst = self.fc(h_src).view(-1, self._num_heads, self._out_feats) if graph.is_block: feat_dst = feat_src[:graph.number_of_dst_nodes()] # Assign features to nodes graph.srcdata.update({'ft': feat_src}) graph.dstdata.update({'ft': feat_dst}) # Step 1. dot product graph.apply_edges(fn.u_dot_v('ft', 'ft', 'a')) # Step 2. edge softmax to compute attention scores graph.edata['sa'] = edge_softmax(graph, graph.edata['a'] / self._out_feats**0.5) # Step 3. Broadcast softmax value to each edge, and aggregate dst node graph.update_all(fn.u_mul_e('ft', 'sa', 'attn'), fn.sum('attn', 'agg_u')) # output results to the destination nodes rst = graph.dstdata['agg_u'] if get_attention: return rst, graph.edata['sa'] else: return rst