Source code for dgl.nn.pytorch.conv.chebconv

"""Torch Module for Chebyshev Spectral Graph Convolution layer"""
# pylint: disable= no-member, arguments-differ, invalid-name
import torch as th
import torch.nn.functional as F
from torch import nn

from .... import broadcast_nodes
from .... import function as fn
from ....base import dgl_warning


[docs]class ChebConv(nn.Module): r"""Chebyshev Spectral Graph Convolution layer from `Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering <https://arxiv.org/pdf/1606.09375.pdf>`__ .. math:: h_i^{l+1} &= \sum_{k=0}^{K-1} W^{k, l}z_i^{k, l} Z^{0, l} &= H^{l} Z^{1, l} &= \tilde{L} \cdot H^{l} Z^{k, l} &= 2 \cdot \tilde{L} \cdot Z^{k-1, l} - Z^{k-2, l} \tilde{L} &= 2\left(I - \tilde{D}^{-1/2} \tilde{A} \tilde{D}^{-1/2}\right)/\lambda_{max} - I where :math:`\tilde{A}` is :math:`A` + :math:`I`, :math:`W` is learnable weight. Parameters ---------- in_feats: int Dimension of input features; i.e, the number of dimensions of :math:`h_i^{(l)}`. out_feats: int Dimension of output features :math:`h_i^{(l+1)}`. k : int Chebyshev filter size :math:`K`. activation : function, optional Activation function. Default ``ReLu``. bias : bool, optional If True, adds a learnable bias to the output. Default: ``True``. Example ------- >>> import dgl >>> import numpy as np >>> import torch as th >>> from dgl.nn import ChebConv >> >>> g = dgl.graph(([0,1,2,3,2,5], [1,2,3,4,0,3])) >>> feat = th.ones(6, 10) >>> conv = ChebConv(10, 2, 2) >>> res = conv(g, feat) >>> res tensor([[ 0.6163, -0.1809], [ 0.6163, -0.1809], [ 0.6163, -0.1809], [ 0.9698, -1.5053], [ 0.3664, 0.7556], [-0.2370, 3.0164]], grad_fn=<AddBackward0>) """ def __init__(self, in_feats, out_feats, k, activation=F.relu, bias=True): super(ChebConv, self).__init__() self._k = k self._in_feats = in_feats self._out_feats = out_feats self.activation = activation self.linear = nn.Linear(k * in_feats, out_feats, bias)
[docs] def forward(self, graph, feat, lambda_max=None): r"""Compute ChebNet layer. Parameters ---------- graph : DGLGraph The graph. feat : torch.Tensor The input feature of shape :math:`(N, D_{in})` where :math:`D_{in}` is size of input feature, :math:`N` is the number of nodes. lambda_max : list or tensor or None, optional. A list(tensor) with length :math:`B`, stores the largest eigenvalue of the normalized laplacian of each individual graph in ``graph``, where :math:`B` is the batch size of the input graph. Default: None. If None, this method would set the default value to 2. One can use :func:`dgl.laplacian_lambda_max` to compute this value. Returns ------- torch.Tensor The output feature of shape :math:`(N, D_{out})` where :math:`D_{out}` is size of output feature. """ def unnLaplacian(feat, D_invsqrt, graph): """Operation Feat * D^-1/2 A D^-1/2""" graph.ndata["h"] = feat * D_invsqrt graph.update_all(fn.copy_u("h", "m"), fn.sum("m", "h")) return graph.ndata.pop("h") * D_invsqrt with graph.local_scope(): D_invsqrt = ( th.pow(graph.in_degrees().to(feat).clamp(min=1), -0.5) .unsqueeze(-1) ) if lambda_max is None: dgl_warning( "lambda_max is not provided, using default value of 2. " "Please use dgl.laplacian_lambda_max to compute the eigenvalues." ) lambda_max = [2] * graph.batch_size if isinstance(lambda_max, list): lambda_max = th.Tensor(lambda_max).to(feat) if lambda_max.dim() == 1: lambda_max = lambda_max.unsqueeze(-1) # (B,) to (B, 1) # broadcast from (B, 1) to (N, 1) lambda_max = broadcast_nodes(graph, lambda_max) re_norm = 2.0 / lambda_max # X_0 is the raw feature, Xt refers to the concatenation of X_0, X_1, ... X_t Xt = X_0 = feat # X_1(f) if self._k > 1: h = unnLaplacian(X_0, D_invsqrt, graph) X_1 = -re_norm * h + X_0 * (re_norm - 1) # Concatenate Xt and X_1 Xt = th.cat((Xt, X_1), 1) # Xi(x), i = 2...k for _ in range(2, self._k): h = unnLaplacian(X_1, D_invsqrt, graph) X_i = -2 * re_norm * h + X_1 * 2 * (re_norm - 1) - X_0 # Concatenate Xt and X_i Xt = th.cat((Xt, X_i), 1) X_1, X_0 = X_i, X_1 # linear projection h = self.linear(Xt) # activation if self.activation: h = self.activation(h) return h