"""Torch Module for Chebyshev Spectral Graph Convolution layer"""
# pylint: disable= no-member, arguments-differ, invalid-name
import torch as th
import torch.nn.functional as F
from torch import nn
from .... import broadcast_nodes
from .... import function as fn
from ....base import dgl_warning
[docs]class ChebConv(nn.Module):
r"""Chebyshev Spectral Graph Convolution layer from `Convolutional
Neural Networks on Graphs with Fast Localized Spectral Filtering
<https://arxiv.org/pdf/1606.09375.pdf>`__
.. math::
h_i^{l+1} &= \sum_{k=0}^{K-1} W^{k, l}z_i^{k, l}
Z^{0, l} &= H^{l}
Z^{1, l} &= \tilde{L} \cdot H^{l}
Z^{k, l} &= 2 \cdot \tilde{L} \cdot Z^{k-1, l} - Z^{k-2, l}
\tilde{L} &= 2\left(I - \tilde{D}^{-1/2} \tilde{A} \tilde{D}^{-1/2}\right)/\lambda_{max} - I
where :math:`\tilde{A}` is :math:`A` + :math:`I`, :math:`W` is learnable weight.
Parameters
----------
in_feats: int
Dimension of input features; i.e, the number of dimensions of :math:`h_i^{(l)}`.
out_feats: int
Dimension of output features :math:`h_i^{(l+1)}`.
k : int
Chebyshev filter size :math:`K`.
activation : function, optional
Activation function. Default ``ReLu``.
bias : bool, optional
If True, adds a learnable bias to the output. Default: ``True``.
Example
-------
>>> import dgl
>>> import numpy as np
>>> import torch as th
>>> from dgl.nn import ChebConv
>>
>>> g = dgl.graph(([0,1,2,3,2,5], [1,2,3,4,0,3]))
>>> feat = th.ones(6, 10)
>>> conv = ChebConv(10, 2, 2)
>>> res = conv(g, feat)
>>> res
tensor([[ 0.6163, -0.1809],
[ 0.6163, -0.1809],
[ 0.6163, -0.1809],
[ 0.9698, -1.5053],
[ 0.3664, 0.7556],
[-0.2370, 3.0164]], grad_fn=<AddBackward0>)
"""
def __init__(self, in_feats, out_feats, k, activation=F.relu, bias=True):
super(ChebConv, self).__init__()
self._k = k
self._in_feats = in_feats
self._out_feats = out_feats
self.activation = activation
self.linear = nn.Linear(k * in_feats, out_feats, bias)
[docs] def forward(self, graph, feat, lambda_max=None):
r"""Compute ChebNet layer.
Parameters
----------
graph : DGLGraph
The graph.
feat : torch.Tensor
The input feature of shape :math:`(N, D_{in})` where :math:`D_{in}`
is size of input feature, :math:`N` is the number of nodes.
lambda_max : list or tensor or None, optional.
A list(tensor) with length :math:`B`, stores the largest eigenvalue
of the normalized laplacian of each individual graph in ``graph``,
where :math:`B` is the batch size of the input graph. Default: None.
If None, this method would set the default value to 2.
One can use :func:`dgl.laplacian_lambda_max` to compute this value.
Returns
-------
torch.Tensor
The output feature of shape :math:`(N, D_{out})` where :math:`D_{out}`
is size of output feature.
"""
def unnLaplacian(feat, D_invsqrt, graph):
"""Operation Feat * D^-1/2 A D^-1/2"""
graph.ndata["h"] = feat * D_invsqrt
graph.update_all(fn.copy_u("h", "m"), fn.sum("m", "h"))
return graph.ndata.pop("h") * D_invsqrt
with graph.local_scope():
D_invsqrt = (
th.pow(graph.in_degrees().to(feat).clamp(min=1), -0.5)
.unsqueeze(-1)
)
if lambda_max is None:
dgl_warning(
"lambda_max is not provided, using default value of 2. "
"Please use dgl.laplacian_lambda_max to compute the eigenvalues."
)
lambda_max = [2] * graph.batch_size
if isinstance(lambda_max, list):
lambda_max = th.Tensor(lambda_max).to(feat)
if lambda_max.dim() == 1:
lambda_max = lambda_max.unsqueeze(-1) # (B,) to (B, 1)
# broadcast from (B, 1) to (N, 1)
lambda_max = broadcast_nodes(graph, lambda_max)
re_norm = 2.0 / lambda_max
# X_0 is the raw feature, Xt refers to the concatenation of X_0, X_1, ... X_t
Xt = X_0 = feat
# X_1(f)
if self._k > 1:
h = unnLaplacian(X_0, D_invsqrt, graph)
X_1 = -re_norm * h + X_0 * (re_norm - 1)
# Concatenate Xt and X_1
Xt = th.cat((Xt, X_1), 1)
# Xi(x), i = 2...k
for _ in range(2, self._k):
h = unnLaplacian(X_1, D_invsqrt, graph)
X_i = -2 * re_norm * h + X_1 * 2 * (re_norm - 1) - X_0
# Concatenate Xt and X_i
Xt = th.cat((Xt, X_i), 1)
X_1, X_0 = X_i, X_1
# linear projection
h = self.linear(Xt)
# activation
if self.activation:
h = self.activation(h)
return h