Source code for dgl.generators

"""Module for various graph generator functions."""

from . import backend as F
from . import convert, random

__all__ = ["rand_graph", "rand_bipartite"]


[docs]def rand_graph(num_nodes, num_edges, idtype=F.int64, device=F.cpu()): """Generate a random graph of the given number of nodes/edges and return. It uniformly chooses ``num_edges`` from all possible node pairs and form a graph. The random choice is without replacement, which means there will be no multi-edge in the resulting graph. To control the randomness, set the random seed via :func:`dgl.seed`. Parameters ---------- num_nodes : int The number of nodes num_edges : int The number of edges idtype : int32, int64, optional The data type for storing the structure-related graph information such as node and edge IDs. It should be a framework-specific data type object (e.g., torch.int32). By default, DGL uses int64. device : Device context, optional The device of the resulting graph. It should be a framework-specific device object (e.g., torch.device). By default, DGL stores the graph on CPU. Returns ------- DGLGraph The generated random graph. See Also -------- rand_bipartite Examples -------- >>> import dgl >>> dgl.rand_graph(100, 10) Graph(num_nodes=100, num_edges=10, ndata_schemes={} edata_schemes={}) """ # TODO(minjie): support RNG as one of the arguments. eids = random.choice(num_nodes * num_nodes, num_edges, replace=False) eids = F.zerocopy_to_numpy(eids) rows = F.zerocopy_from_numpy(eids // num_nodes) cols = F.zerocopy_from_numpy(eids % num_nodes) rows = F.copy_to(F.astype(rows, idtype), device) cols = F.copy_to(F.astype(cols, idtype), device) return convert.graph( (rows, cols), num_nodes=num_nodes, idtype=idtype, device=device )
[docs]def rand_bipartite( utype, etype, vtype, num_src_nodes, num_dst_nodes, num_edges, idtype=F.int64, device=F.cpu(), ): """Generate a random uni-directional bipartite graph and return. It uniformly chooses ``num_edges`` from all possible node pairs and form a graph. The random choice is without replacement, which means there will be no multi-edge in the resulting graph. To control the randomness, set the random seed via :func:`dgl.seed`. Parameters ---------- utype : str, optional The name of the source node type. etype : str, optional The name of the edge type. vtype : str, optional The name of the destination node type. num_src_nodes : int The number of source nodes. num_dst_nodes : int The number of destination nodes. num_edges : int The number of edges idtype : int32, int64, optional The data type for storing the structure-related graph information such as node and edge IDs. It should be a framework-specific data type object (e.g., torch.int32). By default, DGL uses int64. device : Device context, optional The device of the resulting graph. It should be a framework-specific device object (e.g., torch.device). By default, DGL stores the graph on CPU. Returns ------- DGLGraph The generated random bipartite graph. See Also -------- rand_graph Examples -------- >>> import dgl >>> dgl.rand_bipartite('user', 'buys', 'game', 50, 100, 10) Graph(num_nodes={'game': 100, 'user': 50}, num_edges={('user', 'buys', 'game'): 10}, metagraph=[('user', 'game', 'buys')]) """ # TODO(minjie): support RNG as one of the arguments. eids = random.choice( num_src_nodes * num_dst_nodes, num_edges, replace=False ) eids = F.zerocopy_to_numpy(eids) rows = F.zerocopy_from_numpy(eids // num_dst_nodes) cols = F.zerocopy_from_numpy(eids % num_dst_nodes) rows = F.copy_to(F.astype(rows, idtype), device) cols = F.copy_to(F.astype(cols, idtype), device) return convert.heterograph( {(utype, etype, vtype): (rows, cols)}, {utype: num_src_nodes, vtype: num_dst_nodes}, idtype=idtype, device=device, )