dgl.DGLGraph.remove_nodes¶
-
DGLGraph.
remove_nodes
(nids, ntype=None, store_ids=False)¶ Remove multiple nodes with the specified node type
Edges that connect to the nodes will be removed as well. After removing nodes and edges, the rest nodes and edges will be re-indexed using consecutive integers from 0, with their relative order preserved.
The features for the removed nodes/edges will be removed accordingly.
- Parameters
nids (int, tensor, numpy.ndarray, list) – Nodes to remove.
ntype (str, optional) – The type of the nodes to remove. Can be omitted if there is only one node type in the graph.
store_ids (bool, optional) – If True, it will store the raw IDs of the extracted nodes and edges in the
ndata
andedata
of the resulting graph under namedgl.NID
anddgl.EID
, respectively.
Notes
This function preserves the batch information.
Examples
Homogeneous Graphs or Heterogeneous Graphs with A Single Node Type
>>> g = dgl.graph((torch.tensor([0, 0, 2]), torch.tensor([0, 1, 2]))) >>> g.ndata['hv'] = torch.arange(3).float().reshape(-1, 1) >>> g.edata['he'] = torch.arange(3).float().reshape(-1, 1) >>> g.remove_nodes(torch.tensor([0, 1])) >>> g Graph(num_nodes=1, num_edges=1, ndata_schemes={'hv': Scheme(shape=(1,), dtype=torch.float32)} edata_schemes={'he': Scheme(shape=(1,), dtype=torch.float32)}) >>> g.ndata['hv'] tensor([[2.]]) >>> g.edata['he'] tensor([[2.]])
Removing nodes from a batched graph preserves batch information.
>>> g = dgl.graph((torch.tensor([0, 0, 2]), torch.tensor([0, 1, 2]))) >>> g2 = dgl.graph((torch.tensor([1, 2, 3]), torch.tensor([1, 3, 4]))) >>> bg = dgl.batch([g, g2]) >>> bg.batch_num_nodes() tensor([3, 5]) >>> bg.remove_nodes([1, 4]) >>> bg.batch_num_nodes() tensor([2, 4]) >>> bg.batch_num_edges() tensor([2, 2])
Heterogeneous Graphs with Multiple Node Types
>>> g = dgl.heterograph({ ... ('user', 'plays', 'game'): (torch.tensor([0, 1, 1, 2]), ... torch.tensor([0, 0, 1, 1])), ... ('developer', 'develops', 'game'): (torch.tensor([0, 1]), ... torch.tensor([0, 1])) ... }) >>> g.remove_nodes(torch.tensor([0, 1])) DGLError: Node type name must be specified if there are more than one node types. >>> g.remove_nodes(torch.tensor([0, 1]), ntype='game') >>> g.num_nodes('user') 3 >>> g.num_nodes('game') 0 >>> g.num_edges('plays') 0
See also