"""Datasets used in How Powerful Are Graph Neural Networks?
(chen jun)
Datasets include:
MUTAG, COLLAB, IMDBBINARY, IMDBMULTI, NCI1, PROTEINS, PTC, REDDITBINARY, REDDITMULTI5K
https://github.com/weihua916/powerful-gnns/blob/master/dataset.zip
"""
import os
import numpy as np
from .. import backend as F
from ..convert import graph as dgl_graph
from ..utils import retry_method_with_fix
from .dgl_dataset import DGLBuiltinDataset
from .utils import (
download,
extract_archive,
load_graphs,
load_info,
loadtxt,
save_graphs,
save_info,
)
[docs]class GINDataset(DGLBuiltinDataset):
"""Dataset Class for `How Powerful Are Graph Neural Networks? <https://arxiv.org/abs/1810.00826>`_.
This is adapted from `<https://github.com/weihua916/powerful-gnns/blob/master/dataset.zip>`_.
The class provides an interface for nine datasets used in the paper along with the paper-specific
settings. The datasets are ``'MUTAG'``, ``'COLLAB'``, ``'IMDBBINARY'``, ``'IMDBMULTI'``,
``'NCI1'``, ``'PROTEINS'``, ``'PTC'``, ``'REDDITBINARY'``, ``'REDDITMULTI5K'``.
If ``degree_as_nlabel`` is set to ``False``, then ``ndata['label']`` stores the provided node label,
otherwise ``ndata['label']`` stores the node in-degrees.
For graphs that have node attributes, ``ndata['attr']`` stores the node attributes.
For graphs that have no attribute, ``ndata['attr']`` stores the corresponding one-hot encoding
of ``ndata['label']``.
Parameters
---------
name: str
dataset name, one of
(``'MUTAG'``, ``'COLLAB'``, \
``'IMDBBINARY'``, ``'IMDBMULTI'``, \
``'NCI1'``, ``'PROTEINS'``, ``'PTC'``, \
``'REDDITBINARY'``, ``'REDDITMULTI5K'``)
self_loop: bool
add self to self edge if true
degree_as_nlabel: bool
take node degree as label and feature if true
transform: callable, optional
A transform that takes in a :class:`~dgl.DGLGraph` object and returns
a transformed version. The :class:`~dgl.DGLGraph` object will be
transformed before every access.
Attributes
----------
num_classes : int
Number of classes for multiclass classification
Examples
--------
>>> data = GINDataset(name='MUTAG', self_loop=False)
The dataset instance is an iterable
>>> len(data)
188
>>> g, label = data[128]
>>> g
Graph(num_nodes=13, num_edges=26,
ndata_schemes={'label': Scheme(shape=(), dtype=torch.int64), 'attr': Scheme(shape=(7,), dtype=torch.float32)}
edata_schemes={})
>>> label
tensor(1)
Batch the graphs and labels for mini-batch training
>>> graphs, labels = zip(*[data[i] for i in range(16)])
>>> batched_graphs = dgl.batch(graphs)
>>> batched_labels = torch.tensor(labels)
>>> batched_graphs
Graph(num_nodes=330, num_edges=748,
ndata_schemes={'label': Scheme(shape=(), dtype=torch.int64), 'attr': Scheme(shape=(7,), dtype=torch.float32)}
edata_schemes={})
"""
def __init__(
self,
name,
self_loop,
degree_as_nlabel=False,
raw_dir=None,
force_reload=False,
verbose=False,
transform=None,
):
self._name = name # MUTAG
gin_url = "https://raw.githubusercontent.com/weihua916/powerful-gnns/master/dataset.zip"
self.ds_name = "nig"
self.self_loop = self_loop
self.graphs = []
self.labels = []
# relabel
self.glabel_dict = {}
self.nlabel_dict = {}
self.elabel_dict = {}
self.ndegree_dict = {}
# global num
self.N = 0 # total graphs number
self.n = 0 # total nodes number
self.m = 0 # total edges number
# global num of classes
self.gclasses = 0
self.nclasses = 0
self.eclasses = 0
self.dim_nfeats = 0
# flags
self.degree_as_nlabel = degree_as_nlabel
self.nattrs_flag = False
self.nlabels_flag = False
super(GINDataset, self).__init__(
name=name,
url=gin_url,
hash_key=(name, self_loop, degree_as_nlabel),
raw_dir=raw_dir,
force_reload=force_reload,
verbose=verbose,
transform=transform,
)
@property
def raw_path(self):
return os.path.join(self.raw_dir, "GINDataset")
def download(self):
r"""Automatically download data and extract it."""
zip_file_path = os.path.join(self.raw_dir, "GINDataset.zip")
download(self.url, path=zip_file_path)
extract_archive(zip_file_path, self.raw_path)
[docs] def __len__(self):
"""Return the number of graphs in the dataset."""
return len(self.graphs)
[docs] def __getitem__(self, idx):
"""Get the idx-th sample.
Parameters
---------
idx : int
The sample index.
Returns
-------
(:class:`dgl.Graph`, Tensor)
The graph and its label.
"""
if self._transform is None:
g = self.graphs[idx]
else:
g = self._transform(self.graphs[idx])
return g, self.labels[idx]
def _file_path(self):
return os.path.join(
self.raw_dir,
"GINDataset",
"dataset",
self.name,
"{}.txt".format(self.name),
)
def process(self):
"""Loads input dataset from dataset/NAME/NAME.txt file"""
if self.verbose:
print("loading data...")
self.file = self._file_path()
with open(self.file, "r") as f:
# line_1 == N, total number of graphs
self.N = int(f.readline().strip())
for i in range(self.N):
if (i + 1) % 10 == 0 and self.verbose is True:
print("processing graph {}...".format(i + 1))
grow = f.readline().strip().split()
# line_2 == [n_nodes, l] is equal to
# [node number of a graph, class label of a graph]
n_nodes, glabel = [int(w) for w in grow]
# relabel graphs
if glabel not in self.glabel_dict:
mapped = len(self.glabel_dict)
self.glabel_dict[glabel] = mapped
self.labels.append(self.glabel_dict[glabel])
g = dgl_graph(([], []))
g.add_nodes(n_nodes)
nlabels = [] # node labels
nattrs = [] # node attributes if it has
m_edges = 0
for j in range(n_nodes):
nrow = f.readline().strip().split()
# handle edges and attributes(if has)
tmp = int(nrow[1]) + 2 # tmp == 2 + #edges
if tmp == len(nrow):
# no node attributes
nrow = [int(w) for w in nrow]
elif tmp > len(nrow):
nrow = [int(w) for w in nrow[:tmp]]
nattr = [float(w) for w in nrow[tmp:]]
nattrs.append(nattr)
else:
raise Exception("edge number is incorrect!")
# relabel nodes if it has labels
# if it doesn't have node labels, then every nrow[0]==0
if not nrow[0] in self.nlabel_dict:
mapped = len(self.nlabel_dict)
self.nlabel_dict[nrow[0]] = mapped
nlabels.append(self.nlabel_dict[nrow[0]])
m_edges += nrow[1]
g.add_edges(j, nrow[2:])
# add self loop
if self.self_loop:
m_edges += 1
g.add_edges(j, j)
if (j + 1) % 10 == 0 and self.verbose is True:
print(
"processing node {} of graph {}...".format(
j + 1, i + 1
)
)
print("this node has {} edgs.".format(nrow[1]))
if nattrs != []:
nattrs = np.stack(nattrs)
g.ndata["attr"] = F.tensor(nattrs, F.float32)
self.nattrs_flag = True
g.ndata["label"] = F.tensor(nlabels)
if len(self.nlabel_dict) > 1:
self.nlabels_flag = True
assert g.num_nodes() == n_nodes
# update statistics of graphs
self.n += n_nodes
self.m += m_edges
self.graphs.append(g)
self.labels = F.tensor(self.labels)
# if no attr
if not self.nattrs_flag:
if self.verbose:
print("there are no node features in this dataset!")
# generate node attr by node degree
if self.degree_as_nlabel:
if self.verbose:
print("generate node features by node degree...")
for g in self.graphs:
# actually this label shouldn't be updated
# in case users want to keep it
# but usually no features means no labels, fine.
g.ndata["label"] = g.in_degrees()
# extracting unique node labels
# in case the labels/degrees are not continuous number
nlabel_set = set([])
for g in self.graphs:
nlabel_set = nlabel_set.union(
set([F.as_scalar(nl) for nl in g.ndata["label"]])
)
nlabel_set = list(nlabel_set)
is_label_valid = all(
[label in self.nlabel_dict for label in nlabel_set]
)
if (
is_label_valid
and len(nlabel_set) == np.max(nlabel_set) + 1
and np.min(nlabel_set) == 0
):
# Note this is different from the author's implementation. In weihua916's implementation,
# the labels are relabeled anyway. But here we didn't relabel it if the labels are contiguous
# to make it consistent with the original dataset
label2idx = self.nlabel_dict
else:
label2idx = {nlabel_set[i]: i for i in range(len(nlabel_set))}
# generate node attr by node label
for g in self.graphs:
attr = np.zeros((g.num_nodes(), len(label2idx)))
attr[
range(g.num_nodes()),
[
label2idx[nl]
for nl in F.asnumpy(g.ndata["label"]).tolist()
],
] = 1
g.ndata["attr"] = F.tensor(attr, F.float32)
# after load, get the #classes and #dim
self.gclasses = len(self.glabel_dict)
self.nclasses = len(self.nlabel_dict)
self.eclasses = len(self.elabel_dict)
self.dim_nfeats = len(self.graphs[0].ndata["attr"][0])
if self.verbose:
print("Done.")
print(
"""
-------- Data Statistics --------'
#Graphs: %d
#Graph Classes: %d
#Nodes: %d
#Node Classes: %d
#Node Features Dim: %d
#Edges: %d
#Edge Classes: %d
Avg. of #Nodes: %.2f
Avg. of #Edges: %.2f
Graph Relabeled: %s
Node Relabeled: %s
Degree Relabeled(If degree_as_nlabel=True): %s \n """
% (
self.N,
self.gclasses,
self.n,
self.nclasses,
self.dim_nfeats,
self.m,
self.eclasses,
self.n / self.N,
self.m / self.N,
self.glabel_dict,
self.nlabel_dict,
self.ndegree_dict,
)
)
def save(self):
label_dict = {"labels": self.labels}
info_dict = {
"N": self.N,
"n": self.n,
"m": self.m,
"self_loop": self.self_loop,
"gclasses": self.gclasses,
"nclasses": self.nclasses,
"eclasses": self.eclasses,
"dim_nfeats": self.dim_nfeats,
"degree_as_nlabel": self.degree_as_nlabel,
"glabel_dict": self.glabel_dict,
"nlabel_dict": self.nlabel_dict,
"elabel_dict": self.elabel_dict,
"ndegree_dict": self.ndegree_dict,
}
save_graphs(str(self.graph_path), self.graphs, label_dict)
save_info(str(self.info_path), info_dict)
def load(self):
graphs, label_dict = load_graphs(str(self.graph_path))
info_dict = load_info(str(self.info_path))
self.graphs = graphs
self.labels = label_dict["labels"]
self.N = info_dict["N"]
self.n = info_dict["n"]
self.m = info_dict["m"]
self.self_loop = info_dict["self_loop"]
self.gclasses = info_dict["gclasses"]
self.nclasses = info_dict["nclasses"]
self.eclasses = info_dict["eclasses"]
self.dim_nfeats = info_dict["dim_nfeats"]
self.glabel_dict = info_dict["glabel_dict"]
self.nlabel_dict = info_dict["nlabel_dict"]
self.elabel_dict = info_dict["elabel_dict"]
self.ndegree_dict = info_dict["ndegree_dict"]
self.degree_as_nlabel = info_dict["degree_as_nlabel"]
@property
def graph_path(self):
return os.path.join(
self.save_path, "gin_{}_{}.bin".format(self.name, self.hash)
)
@property
def info_path(self):
return os.path.join(
self.save_path, "gin_{}_{}.pkl".format(self.name, self.hash)
)
def has_cache(self):
if os.path.exists(self.graph_path) and os.path.exists(self.info_path):
return True
return False
@property
def num_classes(self):
return self.gclasses