Source code for dgl.data.fakenews

import os

import numpy as np
import scipy.sparse as sp

from .. import backend as F
from ..convert import graph
from .dgl_dataset import DGLBuiltinDataset
from .utils import _get_dgl_url, load_graphs, load_info, save_graphs, save_info


[docs]class FakeNewsDataset(DGLBuiltinDataset): r"""Fake News Graph Classification dataset. The dataset is composed of two sets of tree-structured fake/real news propagation graphs extracted from Twitter. Different from most of the benchmark datasets for the graph classification task, the graphs in this dataset are directed tree-structured graphs where the root node represents the news, the leaf nodes are Twitter users who retweeted the root news. Besides, the node features are encoded user historical tweets using different pretrained language models: - bert: the 768-dimensional node feature composed of Twitter user historical tweets encoded by the bert-as-service - content: the 310-dimensional node feature composed of a 300-dimensional β€œspacy” vector plus a 10-dimensional β€œprofile” vector - profile: the 10-dimensional node feature composed of ten Twitter user profile attributes. - spacy: the 300-dimensional node feature composed of Twitter user historical tweets encoded by the spaCy word2vec encoder. Reference: <https://github.com/safe-graph/GNN-FakeNews> Note: this dataset is for academic use only, and commercial use is prohibited. Statistics: Politifact: - Graphs: 314 - Nodes: 41,054 - Edges: 40,740 - Classes: - Fake: 157 - Real: 157 - Node feature size: - bert: 768 - content: 310 - profile: 10 - spacy: 300 Gossipcop: - Graphs: 5,464 - Nodes: 314,262 - Edges: 308,798 - Classes: - Fake: 2,732 - Real: 2,732 - Node feature size: - bert: 768 - content: 310 - profile: 10 - spacy: 300 Parameters ---------- name : str Name of the dataset (gossipcop, or politifact) feature_name : str Name of the feature (bert, content, profile, or spacy) raw_dir : str Specifying the directory that will store the downloaded data or the directory that already stores the input data. Default: ~/.dgl/ transform : callable, optional A transform that takes in a :class:`~dgl.DGLGraph` object and returns a transformed version. The :class:`~dgl.DGLGraph` object will be transformed before every access. Attributes ---------- name : str Name of the dataset (gossipcop, or politifact) num_classes : int Number of label classes num_graphs : int Number of graphs graphs : list A list of DGLGraph objects labels : Tensor Graph labels feature_name : str Name of the feature (bert, content, profile, or spacy) feature : Tensor Node features train_mask : Tensor Mask of training set val_mask : Tensor Mask of validation set test_mask : Tensor Mask of testing set Examples -------- >>> dataset = FakeNewsDataset('gossipcop', 'bert') >>> graph, label = dataset[0] >>> num_classes = dataset.num_classes >>> feat = dataset.feature >>> labels = dataset.labels """ file_urls = { "gossipcop": "dataset/FakeNewsGOS.zip", "politifact": "dataset/FakeNewsPOL.zip", } def __init__(self, name, feature_name, raw_dir=None, transform=None): assert name in [ "gossipcop", "politifact", ], "Only supports 'gossipcop' or 'politifact'." url = _get_dgl_url(self.file_urls[name]) assert feature_name in [ "bert", "content", "profile", "spacy", ], "Only supports 'bert', 'content', 'profile', or 'spacy'" self.feature_name = feature_name super(FakeNewsDataset, self).__init__( name=name, url=url, raw_dir=raw_dir, transform=transform ) def process(self): """process raw data to graph, labels and masks""" self.labels = F.tensor( np.load(os.path.join(self.raw_path, "graph_labels.npy")) ) num_graphs = self.labels.shape[0] node_graph_id = np.load( os.path.join(self.raw_path, "node_graph_id.npy") ) edges = np.genfromtxt( os.path.join(self.raw_path, "A.txt"), delimiter=",", dtype=int ) src = edges[:, 0] dst = edges[:, 1] g = graph((src, dst)) node_idx_list = [] for idx in range(np.max(node_graph_id) + 1): node_idx = np.where(node_graph_id == idx) node_idx_list.append(node_idx[0]) self.graphs = [g.subgraph(node_idx) for node_idx in node_idx_list] train_idx = np.load(os.path.join(self.raw_path, "train_idx.npy")) val_idx = np.load(os.path.join(self.raw_path, "val_idx.npy")) test_idx = np.load(os.path.join(self.raw_path, "test_idx.npy")) train_mask = np.zeros(num_graphs, dtype=np.bool_) val_mask = np.zeros(num_graphs, dtype=np.bool_) test_mask = np.zeros(num_graphs, dtype=np.bool_) train_mask[train_idx] = True val_mask[val_idx] = True test_mask[test_idx] = True self.train_mask = F.tensor(train_mask) self.val_mask = F.tensor(val_mask) self.test_mask = F.tensor(test_mask) feature_file = "new_" + self.feature_name + "_feature.npz" self.feature = F.tensor( sp.load_npz(os.path.join(self.raw_path, feature_file)).todense() ) def save(self): """save the graph list and the labels""" save_graphs(str(self.graph_path), self.graphs) save_info( self.info_path, { "label": self.labels, "feature": self.feature, "train_mask": self.train_mask, "val_mask": self.val_mask, "test_mask": self.test_mask, }, ) @property def graph_path(self): return os.path.join(self.save_path, self.name + "_dgl_graph.bin") @property def info_path(self): return os.path.join(self.save_path, self.name + "_dgl_graph.pkl") def has_cache(self): """check whether there are processed data in `self.save_path`""" return os.path.exists(self.graph_path) and os.path.exists( self.info_path ) def load(self): """load processed data from directory `self.save_path`""" graphs, _ = load_graphs(str(self.graph_path)) info = load_info(str(self.info_path)) self.graphs = graphs self.labels = info["label"] self.feature = info["feature"] self.train_mask = info["train_mask"] self.val_mask = info["val_mask"] self.test_mask = info["test_mask"] @property def num_classes(self): """Number of classes for each graph, i.e. number of prediction tasks.""" return 2 @property def num_graphs(self): """Number of graphs.""" return self.labels.shape[0]
[docs] def __getitem__(self, i): r"""Get graph and label by index Parameters ---------- i : int Item index Returns ------- (:class:`dgl.DGLGraph`, Tensor) """ if self._transform is None: g = self.graphs[i] else: g = self._transform(self.graphs[i]) return g, self.labels[i]
[docs] def __len__(self): r"""Number of graphs in the dataset. Return ------- int """ return len(self.graphs)